

Electronic pathway length manipulation and impact on conductivity networks in lithium-ion battery electrodes

Jake Entwistle, Guo J Lian, Rachel Smith, **Denis Cumming**

International Battery Production Conference 1st November 2021

Next Generation Electrodes (NEXTRODE)

The Faraday Institution funded project- NEXTRODE

The

Of

University

Sheffield.

WARWICK

• WP1: Denis Cumming

UNIVERSITY^{OF}

BIRMINGHAM

Ruihuan Ge (2nd Nov. 12:30)

- WP2 and WP4: Yeshui Zhang (poster) ACS Appl. Mater. Interfaces 2021, 13, 30, 36605–36620
- WP3: Yige Sun (1st Nov. 14:50)
- WP5: Geanina Apachitei (2nd Nov. 15:35)

Southampton

ELECTRODE ELECTRONIC CONDUCTIVITY

Particle design

Active material (AM) particle engineering Particle surface coating
Core-shell structured particles
Hybrid composite particles (coating, doping)

Carbon binder domain (CBD) engineering Carbon coating on AM particles
Graphite/carbon nanotubes

• Intensive dry mixing for homogenous carbon coverage

Electrode design

- High power and energy density requires thicker electrodes
- Efficient electron transport networks with decreasing proportions of conductive additives (CA)
- Incorporation of CA has secondary implications
 - Electrode porosity and tortuosity
 - Compressibility and mechanical properties
 - AM-binder interactions
 - Electrolyte reservoirs and wettability
 - SEI formation
 - Electrode thermal conductivity

Destructive and constructive impacts of heterogeneity impacts rate capability^[1]

Importance of long- and short-range electrical networks

 Processing techniques affects CBD formation and electronic and ionic networks^{[2][3]}

LONG- AND SHORT-RANGE ELECTRONIC CONTACTS

 Targeted distribution of CA with binder in clusters localized next to contact areas with other AM particles^[4]

No fundamental understanding

What we know

٠

- Optimal quantity and location/ distribution of CA in an electrode
- Optimal combination of long- and short-range contacts
- Advance characterization of contact structure
- Simulation of traditional composite or structured electrodes

[3] Dreger et al., *Journal of Elec Mater*. 2015 44, 4434–4443
[4] Bauer et al., *Journal of Power Sources*. 2015 288, 359-367

Coated active particle

Active particle

Carbon black

MECHANOFUSION PROCESS

Use of mechanofustion to control degree of carbon black deagglomeration as a measure of short-range contacts

MECHANOFUSION CARBON COATING

- Constant solids to AM (NMC622 BASF) : binder (PVDF 5130 Solvay)
- Conductive additives Imerys C65 and KS6 graphite
- AM:B ratio at 98:2wt%
- NMC coated over a range of wt% CB to develop variation in local percolation curve
- Percolation threshold critical conductive additive concentration

- Short to moderate mixing times
 - CB agglomerates broken down and NMC progressively coated
 - Improvements in electronic conduction
- Long mixing times
 - Compaction resulting in a thin and dense coating
 - Dense layer may impede ionic conduction

LONG- AND SHORT-RANGE CONTACTS

Formulation		Nobilta Mixed (AM:CA wt %)	Slurry Mixed
96:2:2 NMC:C65:PVDF (wt%)			
Baseline (control)	Unknown	-	96:2:2wt% (all slurry mixed)
2% C65 Nobilta	100% short-range	96:2	2wt% – Binder
1% C65 Nobilta +1% C65 in slurry	50% long-range 50% short-range	96:1	1wt% – C65 2wt% – Binder
1% C65 Nobilta +1% Graphite in slu		96:1	1wt% – Graphite (KS6) 2wt% – Binder

- Studying C65 and graphite and their ability to provide long range contacts
- Graphite used as an alternative LRC
- Comparing this to other formulations with lower carbon amounts (1wt%)
- Potential additional conductive additives e.g. carbon fibers, nanotubes have not been investigated

Spahr et al., Journal of Power Sources. 2011 196, 3404-3413

MECHANOFUSION EXPERIMENTS

Ŧ

Investigated 1 -10 wt% coating of C65 on NMC

• Inspected with SEM at mixing times from 0 to 60 min

t=5 min

• Powder conductivity measured at time intervals

t=0 min

t=2 min

t=10 min

CONDUCTIVITY AND ELECTROCHEMISTRY

OUTLOOK

Conclusions

- Demonstrated mechanofusion as rapid and effective deagglomeration technique
- Manipulation of carbon black controls electronic conductivity
- Complex relationship between CBD processing and morphology on cell performance
- Binder location may differ in SR and mixed range structures
- Unknown impact of coating on calendering mechanics

Future Work

- Investigate mechanofusion mechanisms
- Further determination of control in long- and shortrange electrical contacts
- Why does slurry casting perform so well?
- Best conductive additive for long-range contacts
- Better characterisation techniques to quantify pathways
- Use our understanding and methods to produce designed conductive pathways and 3D architectures.

ACKNOWLEDGEMENTS & PARTNER UNIVERSITIES

Rachel Smith Work Package Lead

Jake Entwistle Post-doctoral **Research Associate**

Guo J Lian PhD Researcher

ELECTRODE MANUFACTURING

SHORT RANGE CONTACTS

Conventional slurry electrode NMC particle

Mechanofusion coated NMC particle

ELECTROCHEMICAL RESULTS

- Complex relationship between cell performance and CBD morphology
- Further work to investigate electrode pore properties, electrolyte reservoirs, EIS response etc.
- How does coating for short-range contacts change calendering mechanics

