Publications

Expand All

 

79. The role of chemo-mechanical modelling in the development of battery technology - a perspective. A.M. Boyce, E. Martínez-Paneda and P.R. Shearing.

https://doi.org/10.1088/2515-7655/ad3675

78. Effects of sulfate modification of stoichiometric and lithium-rich LiNiO2 cathode materials. B. Dong, A. Poletayev, J.P. Cottom, J. Castells-Gil, B. Spencer, C. Li, P. Zhu, Y. Chen, J-M. Price, L.L. Driscoll, P.K. Allan, E. Kendrick, M.S. Islam and P.R. Slater.

https://doi.org/10.1039/D4TA00284A

77. A groovy laser processing route to achieving high power and energy Lithium-ion batteries. P. Zhu, A. Boyce, S.R. Daemi, B. Dong, Y. Chen, S. Guan, M. Crozier, Y-L. Chiu, A.J. Davenport, R. Jervis, P. Shearing, R.N. Esfahani, P.R. Slater and E. Kendrick.

https://doi.org/10.1016/j.ensm.2024.103373

76. Understanding the drying process and mud cracking of Li-ion battery electrodes through synchrotron X-ray computed tomography. A. R. T. Morrison, W. Dawson, D. J. L. Brett, and P. R. Shearing

https://doi.org/10.1149/MA023-026945mtgabs

75. High-power recycling: upcycling to the next generation of high-power anodes for Li-ion battery applications. A. J. Green, E. H. Driscoll, P. A. Anderson, E. Kendrick, and P. R. Slater

https://doi.org/10.1039/d3ta07549d

74. Realising higher capacity and stability for disordered rocksalt oxyfluoride cathode materials for Li ion batteries. Y. Chen and C. Huang.

https://doi.org/10.1039/d3ra05684h

73. Exploring the properties of disordered rocksalt battery cathode materials by advanced characterization. R. Chen, C.L.A. Leung and C. Huang.

https://doi.org/10.1002/adfm.202308165

72. MXene-based energy devices: From progressive to prospective. S. Kazim, C. Huang, N.H. Hemasiri, A. Kulkarni, S. Mathur and S. Ahmad.

https://doi.org/10.1002/adfm.202315694

71. Solvent-free NMC electrodes for Li-ion batteries: unravelling the microstructure and formation of the PTFE nano-fibril network. G. A. B. Matthews, S. Wheeler, J. Ramírez-González and P. S. Grant.

https://doi.org/10.3389/fenrg.2023.1336344

 

70. Effect of carbon blacks on electrical conduction and conductive binder domain of next-generation Lithium-ion batteries. X. Lu, G.J. Lian, J. Parker, R. Ge, M.K. Sadan, R.M. Smith and D Cumming.

https://doi.org/10.1016/j.jpowsour.2023.233916

69. Co, Ni-free ultrathick free-standing dry electrodes for sustainable Lithium-ion batteries. M.K. Sadan, G.J. Lian, R.M. Smith and D. Cumming.

https://doi/10.1021/acsaem.3c02448

68. Data of physical and electrochemical characteristics of calendered NMC622 electrodes and lithium-ion cells at pilot-plant battery manufacturing. M. Faraji-Niri, M.F.V. Hidalgo, G. Apachitei, D. Dogaru, M. Lain, M. Copley and J. Marco.

https://doi.org/10.1016/j.dib.2023.109798

67. Multi-layering of carbon conductivity enhancers for boosting rapid recharging performance of high mass loading lithium ion battery electrodes. S.H. Lee, Y. Sun and P.S. Grant.

https://doi.org/10.1016/j.jcis.2023.10.153

66. Direct observations of electrochemically induced intergranular cracking in polycrystalline NMC811 particles. H.C.W. Parks, A.M. Boyce, A. Wade, T.M.M. Heenan, C. Tan, E. Martínez-Pañeda, P.R. Shearing, D.J.L. Brett and R. Jervis.

https://doi.org/10.1039/D3TA03057A

65. Rapid sintering of Li6.5La3Zr1Nb0.5Ce0.25Ti0.25O12 for high density lithium garnet electrolytes with current induced in situ interfacial resistance reduction. M.P. Stockham, B. Dong, M.S. James, P. Zhu, E. Kendrick and P. R. Slater.

https://doi.org/10.1039/D3YA00123G

64. Machine learning in lithium-ion battery cell production: A comprehensive mapping study. S. Haghi, M.F.V. Hidalgo, M.F. Niri, R. Daub, and J. Marco.

https://doi.org/10.1002/batt.202300046

63. A review of the applications of Explainable Machine Learning for lithium–ion batteries: From production to state and performance estimation. M. Faraji Niri, K. Aslansefat, S. Haghi, M. Hashemian, R. Daub and J. Marco.

https://doi.org/10.3390/en16176360

62. Optimisation of industrially relevant electrode formulations for LFP cathodes in lithium ion cells. G. Apachitei, M. Hidalgo, D. Dogaru, M. Lain, R. Heymer, J. Marco and M. Copley.

https://doi.org/10.3390/batteries9040192

61. Design of experiments for optimizing the calendering process in Li-ion battery manufacturing. M.F.V. Hidalgo, G. Apachitei, D. Dogaru, M. Faraji-Niri, M. Lain, M. Copley and J. Marco.

https://doi.org/10.1016/j.jpowsour.2023.233091

60. Insights into surface chemistry down to nanoscale: An accessible colour hyperspectral imaging approach for scanning electron microscopy. J.F. Nohl, N.T.H. Farr, Y. Sun, G.M. Hughes, N. Stehling, J. Zhang, F. Longman, G. Ives, Z. Pokorná, F. Mika, V. Kumar, L. Mihaylova, C. Holland, S.A. Cussen and C. Rodenburg.

https://doi.org/10.1016/j.mtadv.2023.100413

59. Microstructure of conductive binder domain for electrical conduction in next-generation lithium-ion batteries. X. Lu, G.J. Lian, R. Ge, J. Parker, M.K. Sadan, R. Smith and D. Cumming.

https://doi.org/10.1002/ente.202300446

58. Use of positron emission particle tracking to assess mixing of a graphite-based lithium-ion anode slurry in an Eirich mixer. S.D. Hare, D. Werner, C.R.K. Windows-Yule, T.Z. Kokalova Wheldon, E. Kendrick and M.J.H. Simmons.

https://doi.org/10.1016/j.cherd.2023.08.007

57. Spray fabrication of additive-free electrodes for advanced Lithium-Ion storage technologies. S.H. Lee and P.S. Grant.

https://doi.org/10.1016/j.jcis.2023.07.211

56. Numerical design of microporous carbon binder domains phase in composite cathodes for Lithium-ion batteries. R. Ge, A.M. Boyce, Y. Sun, P.R. Shearing, P.S. Grant, D.J. Cumming and R.M. Smith.

https://doi.org/10.1021/acsami.3c00998

55. Discrete element method and electrochemical modelling of lithium ion cathode structures characterised by X-ray computed tomography. R. Ge, A.M. Boyce, Y.S. Zhang, P.R. Shearing, D.J. Cumming, D.J. and R.M. Smith.

https://doi.org/10.1016/j.cej.2023.142749

54. Status and outlook for lithium-ion battery cathode material synthesis and the application of mechanistic modelling. K. Pardikar, J. Entwistle, R. Ge, D.J. Cumming and R. Smith.

https://doi.org/10.1088/2515-7655/acc139

53. Jointly learning consistent causal abstractions over multiple interventional distributions. F.M. Zennaro, M. Dravucz, G. Apachitei, W.D. Widanage and T. Damoulas.

https://arxiv.org/pdf/2301.05893.pdf

52. Synthesis, structure and electrochemical properties of a new cation ordered layered Li-Ni-Mg-Mo oxide. B. Dong, J. Castells-Gil, P. Zhu, L.L. Driscoll, E. Kendrick, P.K. Allan and P.R. Slater.

https://doi.org/10.1039/D2MA00981A

51. Quantitative assessment of machine-learning segmentation of battery electrode materials for active material quantification. J.J. Bailey, A. Wade, A.M. Boyce, Y.S. Zhang, D.J.L. Brett and P.R. Shearing.

https://doi.org/10.1016/j.jpowsour.2022.232503

50. Direct Observation of Dynamic Lithium Diffusion Behaviour in Nickel-Rich, LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes using Operando Muon Spectroscopy. I. McClelland, S.G. Booth, N.N. Anthonisamy, L.A. Middlemiss, G.E. Pérez, E.J. Cussen, P.J. Baker and S.A. Cussen.

https://doi.org/10.1021/acs.chemmater.2c03834

 

49. Mechanism of gelation in high nickel content cathode slurries for sodium-ion batteries. S. Roberts, L. Chen, B. Kishore, C.E.J. Dancer, M.J.H. Simmons and E. Kendrick.

https://doi.org/10.1016/j.jcis.2022.07.033

48. Direct reuse of aluminium and copper current collectors from spent lithium-ion batteries. P. Zhu, E.H. Driscoll, B. Dong, R. Sommerville, A. Zorin, P.R. Slater and E. Kendrick.

https://doi.org/10.1039/D2GC03940K

47. Cross-sectional analysis of lithium ion electrodes using spatial autocorrelation techniques. M.J. Lain, G. Apachitei, L. Roman-Ramırez, M. Copley and J. Marco.

https://doi.org/10.1039/D2CP03094B

46. Roadmap on Li-ion battery manufacturing research. P.S. Grant, D. Greenwood, K. Pardikar, R. Smith, T. Entwistle, L.A. Middlemiss, G. Murray, S.A. Cussen, M.J. Lain, M.J. Capener, M. Copley, C.D. Reynolds, S.D. Hare, M.J.H. Simmons, E. Kendrick, S.P. Zankowski, S. Wheeler, P. Zhu, P.R. Slater, Y. Zhang, A.R.T. Morrison, W. Dawson, J. Li, P.R. Shearing, D.J.L. Brett, G. Matthews, R. Ge, R. Drummond, E.C. Tredenick, C. Cheng, S.R. Duncan, A.M. Boyce, M. Faraji-Niri, J. Marco, L.A. Roman-Ramirez, C. Harper, P. Blackmore, T. Shelley, A. Mohsseni and D.J. Cumming.

https://doi.org/10.1088/2515-7655/ac8e30

45. Design of experiments applied to lithium-ion batteries: A literature review. L.A. Román-Ramírez and J. Marco.

https://doi.org/10.1016/j.apenergy.2022.119305

44. The impact of calendering process variables on the impedance and capacity fade of lithium-ion cells: An explainable machine learning approach. M. Faraji Niri, G. Apachitei, M. Lain, M. Copley and J. Marco.

https://doi.org/10.1002/ente.202200893

43. Interpretable machine learning for battery capacities prediction and coating parameters analysis. K. Liu, M Faraji Niri, G. Apachitei, M. Lain, D. Greenwood and J. Marco.

https://doi.org/10.1016/j.conengprac.2022.105202

42. Sequential deposition of integrated cathode–inorganic separator–anode multilayers for high performance Li-ion batteries. J.D. Evans, Y. Sun, and P.S. Grant.

https://doi.org/10.1021/acsami.2c03828

41. Insights into architecture, design and manufacture of electrodes for lithium-ion batteries. P. Zhu, P.R. Slater and E. Kendrick.

https://doi.org/10.1016/j.matdes.2022.111208

40. Machine learning for investigating the relative importance of electrodes’ N:P areal capacity ratio in the manufacturing of lithium-ion battery cells. M. Faraji Niri, G. Apachitei, M. Lain, M. Copley and J. Marco.

https://doi.org/10.1016/j.jpowsour.2022.232124

39. Systematic analysis of the impact of slurry coating on manufacture of Li-ion battery electrodes via explainable machine learning. M. Faraji Niri, C. Reynolds, L.A.A. Román Ramírez, E. Kendrick and J. Marco.

https://doi.org/10.1016/j.ensm.2022.06.036

38. Rheology and structure of lithium-ion battery electrode slurries. C.D. Reynolds, S.D. Hare, P.R. Slater, M.J.H. Simmons, and E. Kendrick.

https://doi.org/10.1002/ente.202200545

37. Extensional rheology of battery electrode slurries with water-based binders. C.D. Reynolds,  J. Lam, L. Yang and E. Kendrick.

https://doi.org/10.1016/j.matdes.2022.111104

36. Optimization of electrode and cell design for ultra-fast-charging lithium-ion batteries based on molybdenum niobium oxide anodes. Y. Lakhdar, H. Geary, M. Houck, D. Gastol, A.S. Groombridge, P.R. Slater and E. Kendrick.

https://doi.org/10.1021/acsaem.2c01814

35. A continuum of physics-based lithium-ion battery models reviewed. F. Brosa Planella, W. Ai, A.M. Boyce, A. Ghosh, I. Korotkin, S. Sahu, V. Sulzer, R. Timms, T.G. Tranter, M. Zyskin, S.J. Cooper, J.S. Edge, J.M. Foster, M .Marinescu, B. Wu and G. Richardson.

https://doi.org/10.1088/2516-1083/ac7d31

34. Exploring the influence of porosity and thickness on lithium-ion battery electrodes using an image-based model. A.M. Boyce, X. Lu, D.J.L. Brett and P.R. Shearing

https://doi.org/10.1016/j.jpowsour.2022.231779

33. Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A Critical Review. J. Entwistle, R. Ge, K. Pardikar, R.M. Smith and D.J. Cumming.

https://doi.org/10.1016/j.rser.2022.112624

32. Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography-the effect of calendering conditions. R. Ge, D.J. Cumming and R.M. Smith.

https://doi.org/10.1016/j.powtec.2022.117366

31. Applications of advanced metrology for understanding the effects of drying temperature in lithium-ion battery electrodes manufacturing process. Y.S. Zhang, J.J. Bailey, Y. Sun, A.M. Boyce, W. Dawson, C.D. Reynolds, Z. Zhang, X. Lu, P. Grant, E. Kendrick, P.R. Shearing and D.J.L. Brett.

https://doi.org/10.1039/D2TA00861K

30. Low-voltage SEM of air-sensitive powders: from sample preparation to micro/nano analysis with Secondary Electron Hyperspectral Imaging. J. F. Nohl, N. T. H. Farr, Y. Sun , G. M. Hughes , S. A. Cussen and C. Rodenburg.

https://doi.org/10.1016/j.micron.2022.103234

29. 2022 roadmap on 3D printing for energy. A. Tarancón, V. Esposito, M. Torrell, M. Di Vece, J.S. Son, P. Norby, S. Bag, P.S. Grant, A. Vogelpoth, S. Linnenbrink, M. Brucki, T. Schopphoven, A. Gasser, E. Persembe, D. Koufou, S. Kuhn, R. Ameloot, X. Hou, K. Engelbrecht, C.R. H. Bahl, N. Pryds, J. Wang, C. Tsouris, E. Miramontes, L. Love, C. Lai, X. Sun, M.R. Kærn, G. Criscuolo and D.B. Pedersen.

https://doi.org/10.1088/2515-7655/ac483d

28. The effect of cell geometry and trigger method on the risks associated with thermal runaway of lithium-ion batteries. W.Q. Walker, K. Cooper, P. Hughes, I. Doemling, M. Akhnoukh, S. Taylor, J. Darst, J. Billman, M. Sharp, D. Petrushenko, R. Owen, M. Pham, T. Heenan, A. Rack, O. Magdsyuk, T. Connolley, D. Brett, P. Shearing, D. Finegan and E. Darcy.

https://doi.org/10.1016/j.jpowsour.2021.230645

27. Determining the electrochemical transport parameters of sodium-ions in hard carbon composite electrodes. D.Ledwoch, L.Komsiyska, E-M.Hammer, K.Smith, P.R.Shearing, D.J.L.Brett, and E.Kendrick.

https://doi.org/10.1016/j.electacta.2021.139481

26. Effect of coating operating parameters on electrode physical characteristics and final electrochemical performance of lithium-ion batteries. L. A. Román-Ramírez, G. Apachitei, M. Faraji-Niri, M. Lain, D. Widanage and J. Marco.

https://doi.org/10.1007/s40095-022-00481-w

25. Effective Ultrasound Acoustic Measurement to Monitor the Lithium-Ion Battery Electrode Drying Process with Various Coating Thicknesses. Y.S. Zhang, J.B. Robinson, R.E. Owen, A.N.P. Radhakrishnan, J. Li, J.O. Majasan, P.R. Shearing, E. Kendrick, and D.J.L. Brett.

https://doi.org/10.1021/acsami.1c22150

24. Experimental data of cathodes manufactured in a convective dryer at the pilot-plant scale, and charge and discharge capacities of half-coin lithium-ion cells. L.A. Román-Ramírez, G. Apachitei, M. Faraji-Niri, M. Lain, D. Widanage and J. Marco.

https://doi.org/10.1016/j.dib.2021.107720

23. Cracking predictions of lithium ion battery electrodes by X-ray computed tomography and modelling. A.M. Boyce, E. Martínez-Paneda, A. Wade, Y. Zhang, J.J. Bailey, T.M.M. Heenan, D.J.L. Brett and P.R. Shearing.

https://doi.org/10.1016/j.jpowsour.2022.231119

22. Modelling the impedance response of graded LiFePO4 cathodes for Li-ion batteries. R. Drummond, C. Cheng, P. S. Grant and S. R. Duncan.

https://doi.org/10.1149/1945-7111/ac48c6

21. Quantifying Key Factors for Optimised Manufacturing of Li-ion Battery Anode and Cathode via Artificial Intelligence. M. Faraji Niri, K. Liu, G. Apachitei, L. Roman Ramirez, M. Lain, D. Widanage and J. Macro.

https://doi.org/10.1016/j.egyai.2021.100129

 

20. Large area visualization of the Li distribution in lithium-ion battery electrodes using plasma FIB and SIMS. Y. Sun, G. Hughes, J. Liu, C. Grovenor and P. Grant.

https://doi.org/10.22443/rms.mmc2021.196

19. Formulation and manufacturing optimization of lithium-ion graphite-based electrodes via machine learning. S.X. Drakopoulos, A. Gholamipour-Shirazi, P. MacDonald, R.C. Parini, C.D. Reynolds, D.L. Burnett, B. Pye, K.B. O’Regan, G. Wang, T.M. Whitehead, G.J. Conduit, A. Cazacu and E. Kendrick.

https://doi.org/10.1016/j.xcrp.2021.100683

18. In situ x-ray computed tomography of zinc–air primary cells during discharge: correlating discharge rate to anode morphology. J. Hack, D. Patel, J.J. Bailey, F. Iacoviello, P.R. Shearing and D.J.L. Brett.

https://doi.org/10.1088/2515-7639/ac3f9a

17. Understanding the effect of coating-drying operating variables on electrode physical and electrochemical properties of lithium-ion batteries. L.A.Román-Ramírez, G.Apachitei, M.Faraji-Niri, M.Lain, W.D.Widanage, and J.Marco.

https://doi.org/10.1016/j.jpowsour.2021.230689

16. Multi-length scale microstructural design of lithium-ion battery electrodes for improved discharge rate performance. X. Lu, X. Zhang, C. Tan, T.M.M. Heenan, M. Lagnoni, K. O'Regan, S. Daemi, A. Bertei, H.G. Jones, G. Hinds, J. Park, E. Kendrick, D.J.L. Brett and P.R. Shearing.

https://doi.org/10.1039/D1EE01388B

15. A Review of Lithium-Ion Battery Electrode Drying: Mechanisms and Metrology. Y. Zhang, N.E. Courtier, Z. Zhang, K. Liu, J.J. Bailey, A.M. Boyce, G. Richardson, P.R. Shearing, E. Kendrick and D.J.L. Brett.

 https://doi.org/10.1002/aenm.202102233

14. Recent advances in acoustic diagnostics for electrochemical power systems. J. Majasan, J. Robinson, R. Owen, M. Maier, A.N.P. Radhakrishnan, M. Pham, T.G. Tranter, Y. Zhang, P. Shearing and D Brett.

https://doi.org/10.1088/2515-7655/abfb4a

13. Design of Scalable, Next-Generation Thick Electrodes: Opportunities and Challenges. A.M. Boyce, D.J. Cumming, C. Huang, S.P. Zankowski, P.S. Grant, D.J.L. Brett and P.R. Shearing.

https://doi.org/10.1021/acsnano.1c09687

12. Feature Analysis and Modelling of Lithium-ion Batteries Manufacturing based on Random Forest Classification. K. Liu, X. Hu, H. Zhou, L. Tong, D. Widanalage and J. Marco.

https://doi.org/10.1109/TMECH.2020.3049046

11. Machine learning for optimised and clean Li-ion battery manufacturing: Revealing the dependency between electrode and cell characteristics. M. Faraji Niri, K. Liu, G. Apachitei, L. Roman Ramirez, M. Lain, D. Widanage, and J. Marco.

https://doi.org/10.1016/j.jclepro.2021.129272

10. A review of metrology in lithium-ion electrode coating processes. C.D. Reynolds, P.R. Slater, S.D. Hare, M.J.H. Simmons and E. Kendrick.

https://doi.org/10.1016/j.matdes.2021.109971

9. In-situ ultrasound acoustic measurement of the lithium-ion battery electrode drying process. Y.S. Zhang, A.N.P. Radhakrishnan, J.B. Robinson, R.E. Owen, T.G. Tranter, E. Kendrick, P.R. Shearing and D.J.L Brett.

https://doi.org/10.1021/acsami.1c10472

8. Thermal-chemical conversion of carbonaceous waste for carbon nanotubes and hydrogen production: A review. Y. Zhang, H. Zhu, D. Yao, P.T. Williams, C. Wu, D. Xu, Q. Hu, G. Manos, L.Yu, M. Zhao, P.R Shearing and D.J.L. Brett.

https://doi.org/10.1039/D1SE00619C

7. Multi-layered composite electrodes of high power Li4Ti5O12 and high capacity SnO2 for smart lithium ion storage. S.H. Lee, C. Huang and P.S. Grant.

https://doi.org/10.1016/j.ensm.2021.02.010

6. Microstructural design of printed graphite electrodes for lithium-ion batteries. D. Gastol, M. Capener, C. Reynolds, C. Constable and E. Kendrick.

https://doi.org/10.1016/j.matdes.2021.109720

5. Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates. M. Kazakli, G. A. Mutch, G. Triantafyllou, A. Gouvei Gil, T. Li, B. Wang, J. J. Bailey, D. J. L. Brett, P. R. Shearing, K. Li and I. Metcalfe.

https://doi.org/10.1016/j.memsci.2020.118640

 

4. Data mining for quality prediction of battery in manufacturing process: Cathode coating process. M. Niri Faraji, K. Liu, G. Apachitei, L. Roman Ramirez, D. Widanage and J. Marco.

https://www.energy-proceedings.org/wp-content/uploads/enerarxiv/1608048802.pdf

3. 4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes. R. F. Ziesche, A. S. Tremsin, C. Huang, C. Tan, P. S. Grant, M. Storm, D. J. L. Brett, P. R. Shearing and W. Kockelmann.

https://doi.org/10.3390/jimaging6120136

2. Automotive Battery Equalizers Based on Joint Switched-Capacitor and Buck-Boost Converters. K. Liu, Z. Yang, X. Tang and W. Cao.

https://doi.org/10.1109/tvt.2020.3019347

1. The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries. E. H. DriscollE. C. Hayward, R. Patchett, P. A. Anderson and P. R. Slater.

https://doi.org/10.1021/acs.jchemed.0c00282